Augmentation of nonsense mediated decay by rapamycin

نویسندگان

  • Rocio Teresa Martinez-Nunez
  • Doyle Coyne
  • Linnea Jansson
  • Miles Rush
  • Hanane Ennajdaoui
  • Tilman Sanchez-Elsner
  • Jeremy R. Sanford
چکیده

RNA surveillance by the Nonsense Mediated Decay (NMD) pathway eliminates potentially deleterious transcripts containing Premature Termination Codons (PTCs). The transition from a pioneering round of translation to steady state translation is hypothesized to be a major checkpoint in this process. One hallmark of mRNAs licensed for translation is the exchange of 7-methylguanosine cap binding proteins. However, mRNAs undergoing steady state translation are also NMD substrates, raising mechanistic questions about the NMD checkpoint. To test the role of cap binding proteins in NMD, we modulated the protein composition of cytoplasmic messenger ribonucleoprotein particles (mRNPs) with the naturally occurring macrolide rapamycin. We demonstrate that despite well-documented attenuation of cap-dependent mRNA translation, rapamycin can augment NMD. Rapamycin-treatment significantly reduces the levels of endogenous and exogenous PTC-containing mRNA isoforms in a doseand UPF1dependent manner. PTC-containing transcripts exhibit a shorter half-life upon rapamacyin-treatment as compared to non-PTC isoforms. Rapamycin also causes depletion of PTC-containing mRNA isoforms from polyribosomes, suggesting that actively translating ribosomes can transition between low and high NMD states. Importantly, mRNPs show depletion of eIF4E and retention of the nuclear Cap Binding Complex (CBC) in rapamycin-treated cells. Our data demonstrate that rapamycin potentiates pioneer-like mRNP context thereby decreasing NMD evasion. not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/028332 doi: bioRxiv preprint first posted online Oct. 3, 2015;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

Modulation of nonsense mediated decay by rapamycin

Rapamycin is a naturally occurring macrolide whose target is at the core of nutrient and stress regulation in a wide range of species. Despite well-established roles as an inhibitor of cap-dependent mRNA translation, relatively little is known about its effects on other modes of RNA processing. Here, we characterize the landscape of rapamycin-induced post-transcriptional gene regulation. Transc...

متن کامل

Growth Arrest on Inhibition of Nonsense-Mediated Decay Is Mediated by Noncoding RNA GAS5

Nonsense-mediated decay is a key RNA surveillance mechanism responsible for the rapid degradation of mRNAs containing premature termination codons and hence prevents the synthesis of truncated proteins. More recently, it has been shown that nonsense-mediated decay also has broader significance in controlling the expression of a significant proportion of the transcriptome. The importance of this...

متن کامل

Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover.

Several lines of evidence indicate that the processes of mRNA turnover and translation are intimately linked and that understanding this relationship is critical to elucidating the mechanism of mRNA decay. One clear example of this relationship is the observation that nonsense mutations can accelerate the decay of mRNAs in a process that we term nonsense-mediated mRNA decay. The experiments des...

متن کامل

Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome.

BACKGROUND Long-QT syndrome type 2 (LQT2) is caused by mutations in the human ether-a-go-go-related gene (hERG). More than 30% of the LQT2 mutations result in premature termination codons. Degradation of premature termination codon-containing mRNA transcripts by nonsense-mediated mRNA decay is increasingly recognized as a mechanism for reducing mRNA levels in a variety of human diseases. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015